Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC

نویسندگان

  • Miaomiao Li
  • Junsheng Liang
  • Chong Liu
  • Gongquan Sun
  • Gang Zhao
چکیده

Clogging of anode flow channels by CO(2) bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO(2) bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO(2) clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Selectively Gas Permeable Anode Flow Field Design for Removal of Carbon Dioxide in a Direct Formic Acid Fuel Cell

Direct formic acid fuel cells (DFAFCs) are electrochemical energy conversion devices well suited to power portable electronics, if researchers can harness their high theoretical efficiencies and address durability issues. To improve DFAFC efficiency, the mass transport of formic acid to the anode catalyst layer must be improved. Conventional serpentine anode flow field designs limit CO2 product...

متن کامل

Design and Fabrication of a Silicon-based Micro Direct Methanol Fuel Cell Stack

This paper presents a silicon-based micro direct methanol fuel cell (μDMFC) stack with compact stacked structure and a unique shared anode plate. The μDMFC stack consists of two fuel cells in electrically parallel connection, while the fuel transport is arranged in series. Experimental results show that the μDMFC stack generates a power density of 12.71mW/cm, almost twice as much as that of a s...

متن کامل

Electrochemical and flow characterization of a direct methanol fuel cell

Two-phase phenomena, i.e. bubble flow in the anode and water flooding in the cathode, are critical to design of high-performance direct methanol fuel cells (DMFC). A 5 cm2 transparent DMFC has been developed to visualize these phenomena in situ. Two types of membrane-electrode assembly (MEA) based on Nafion® 112 were used to investigate effects of backing pore structure and wettability on cell ...

متن کامل

Experimental Study of Heat Transfer around a Cylinder in Presence of Electric Field

In this paper, effects of EHD actuators on hydrodynamic behavior and heat transfer of air flow over a circular cylinder were considered. Pressure and temperature distributions around the cylinder were measured in presence of wire-plate EHD actuators. The Reynolds number based on cylinder diameter (d) were 3500, 7000. Experiments were performed for various configurations. Based on obtained resul...

متن کامل

Numerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil

A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009